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Abstract Bacteria participate in a wide diversity of symbiotic associations with
eukaryotic hosts that require precise interactions for bacterial recognition and per-
sistence. Most commonly, host-associated bacteria interfere with host gene expres-
sion to modulate the immune response to the infection. However, many of these
bacteria also interfere with host cellular differentiation pathways to create a hospi-
table niche, resulting in the formation of novel cell types, tissues, and organs. In both
of these situations, bacterial symbionts must interact with eukaryotic regulatory
pathways. Here, we detail what is known about how bacterial symbionts, from
pathogens to mutualists, control host cellular differentiation across the central
dogma, from epigenetic chromatin modifications, to transcription and mRNA
processing, to translation and protein modifications. We identify four main trends
from this survey. First, mechanisms for controlling host gene expression appear to
evolve from symbionts co-opting cross-talk between host signaling pathways. Sec-
ond, symbiont regulatory capacity is constrained by the processes that drive reduc-
tive genome evolution in host-associated bacteria. Third, the regulatory mechanisms
symbionts exhibit correlate with the cost/benefit nature of the association. And,
fourth, symbiont mechanisms for interacting with host genetic regulatory elements
are not bound by native bacterial capabilities. Using this knowledge, we explore how
the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may
modulate host cellular differentiation to manipulate host reproduction. Our survey of
the literature on how infection alters gene expression in Wolbachia and its hosts
revealed that, despite their intermediate-sized genomes, different strains appear
capable of a wide diversity of regulatory manipulations. Given this andWolbachia’s
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diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-
induced host differentiation mechanisms will be discovered in this system.

Keywords Wolbachia · Drosophila · Symbiosis · Cellular microbiology · Cellular
differentiation · Epigenetics · Transcription · Translation · Proteolysis

5.1 The Symbiotic Lifestyle Requires Cellular Remodeling

Bacterial symbionts of eukaryotic hosts form stable associations by colonizing host
tissues or cells. This lifestyle requires an added layer of cellular regulation relative to
nonsymbiotic lifestyles because symbionts need to integrate with and control the
host environment to create a hospitable niche (La et al. 2008; Schwartzman and
Ruby 2016; Borges 2017). Without this ability, the bacteria are quickly eliminated
by the host’s immune system (Medzhitov 2007). Symbionts are benefitted by their
ability to control the host environment, as their free-living relatives cannot do much
to influence their abiotic environments. However, influencing host cells and tissues
is not a trivial task. To do so, symbionts must decode another organism’s regulatory
pathways and interfere with them without causing too much damage. This is true for
costly parasitisms and beneficial mutualisms, as well as extracellular and intracellu-
lar lifestyles: in all types of associations, bacteria must subvert host defenses to
create a replicative niche (Medzhitov 2007; Mergaert 2018). Furthermore, owing to
the deep, 2 billion year divergence between host and symbiont taxonomic domains,
the eukaryotic regulatory pathways that need to be subverted are often completely
unique from what the bacterial symbiont uses for its own genetic regulation (Cashin
et al. 2006).

Nevertheless, bacterial symbionts have repeatedly found ways of controlling host
gene expression for their own purposes. In many instances, this means finding ways
of integrating with the biology of their multicellular hosts to be recognized as part of
the “self” and colonize particular cell types. Naturally, many of the well-known
examples of symbiont control of host gene expression involve mechanisms for
limiting and modulating immune responses (Grabiec and Potempa 2018), solving
the self/nonself issue. While these abilities are fascinating and essential for host-
associated bacteria, they have been explored in depth elsewhere (see Hamon and
Cossart 2008; Zhong et al. 2013; Silmon de Monerri and Kim 2014; Cheeseman and
Weitzman 2015; Pereira et al. 2016; Vilcinskas 2017; Cornejo et al. 2017). Instead,
here, we explore the evidence for bacterial symbiont control of host cellular differ-
entiation, which can be used to control the identity of infected host cells, the size of
the infection niche, and host reproduction.

In this review, we summarize what is known about how and why symbionts
ranging from pathogens to mutualists control host cellular differentiation to create
novel cell, tissue, or organ types for their habitation (Fig. 5.1). We focus on cellular,
tissue, and organ-levels of differentiation, as different symbiont taxa can target
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Fig. 5.1 Examples of bacterial symbiont-induced cell, tissue, and organ differentiation across the
cost-benefit spectrum of bacterial-eukaryotic symbiotic associations, organized by the point in host
genetic regulation that they influence. Interestingly, no bacterial examples of translation-mediated
host cellular differentiation were found, making viruses and toxin-secreting lytic bacteria the
primary representatives for this strategy. (a) M. leprae induces dedifferentiation of Schwann cells
via altering host epigenetic marks. This produces infected progenitor/stem-like cells (pSLC) that
migrate and become new cell types, such as smooth muscle, spreading the infection throughout the
host’s body (Masaki et al. 2013). (b) The fate of host-derived symbiont-housing cells, bacteriocytes,
and organs, bacteriomes, is specified through changes in the abundance of host transcription factors
(TFs) involved in embryogenesis (Braendle et al. 2003; Matsuura et al. 2015). In the primary aphid
endosymbiont, B. aphidicola, bacteriocyte formation involves reorganization of the endoplasmic
reticulum (orange) to surround dense symbiont (green) aggregates (Simonet et al. 2018). (c)
Pathogenic H. pylori induces host gastric epithelia to dedifferentiate and take on a mesenchymal
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regulatory mechanisms at any of these levels of organization. In particular, we are
interested in the processes of immortality maintenance and dedifferentiation/
redifferentiation, as these strategies enable the stable manipulation of host gene
expression and cell identity for symbiont purposes. In parasitisms, these are often
viewed as neoplastic structures, i.e., abnormal growths. Whereas, in mutualisms,
these structures are generally a part of normal host morphology. After presenting on
the diversity of symbiont-induced tissue differentiation mechanisms reported from
nature, we focus specifically on the ubiquitous intracellular alphaproteobacterial
symbiont of arthropods and nematodes, Wolbachia. We focus on Wolbachia in
particular because of the myriad of remarkable phenotypes it is able to induce in
its hosts (discussed below and reviewed in (Werren et al. 2008)) and the tantalizing
data that have been accumulating, which suggest that strains of these bacteria have
significant capabilities for controlling host cell differentiation pathways. Given the
recent growth and progress in the field ofWolbachia research, the aim of this review
is to inform on the experimental avenues to explore in the future.

5.2 Shared and Unique Mechanisms of Gene Regulation
in Eukaryotic-Bacterial Symbioses

The central dogma—DNA encodes RNA, which encodes proteins—holds across the
diversity of life (Piras et al. 2012). Meaning, regulation points exist for bacteria and
eukaryotes at (1) pretranscription (e.g., epigenetic DNA/histone modifications),
(2) transcription, (3) post-transcription (e.g., mRNA processing or regulation),
(4) translation, (5) post-translation (e.g., protein modifications), and (6) proteolysis.
However, as depicted in Fig. 5.2, how these regulatory mechanisms work in real-
time can differ greatly between domains (Kozak 1992; Blumenthal et al. 2002;
Belasco 2010; Gur et al. 2011). For example, while both domains of organisms
can regulate DNA access for transcription through DNA methylation

Fig. 5.1 (continued) cell fate via effector-mediated influence of host transcription factor retention
and binding. Over the course of a chronic infection, this process produces over-proliferative
neoplasms that can develop into gastric cancer (Bessède et al. 2014). (d) Soil-dwelling rhizobia
bacteria localize to legume plant roots, and induce their uptake into root cells and the formation of
the root nodule through interacting with host transcription factor signaling (Oldroyd 2013). (e) In
juvenile bobtail squid, bioluminescent V. fischeri colonize a ciliated epithelium on the outside of the
nascent light organ, and induce the degradation of the colonization surface’s ciliated appendages
through interfering with host transcription factor signaling (Nyholm and McFall-Ngai 2004). (f)
Plant pathogens in genus Agrobacterium transfer a mobile element to the host cell, which manip-
ulates host miRNA-based genetic regulation to induce dedifferentiation and tumor formation
(Escobar and Dandekar 2003). (g) The intracellular pathogen L. pneumophila induces the formation
of the Legionella-containing vacuole (LCV) through co-opting and mimicking host post-
translational modifications to inhibit host translation and increase proteolysis of host proteins and
peptides (Xu and Luo 2013)
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(Sánchez-Romero et al. 2015), eukaryotes also have histones, which can be modified
to be more or less permissive to the entry of transcriptional machinery (Verdone
et al. 2005). Following transcription, eukaryotes have additional ways to modify
their mRNA relative to bacteria, including RNA splicing, poly-A-tailing, and
50-capping (Belasco 2010), to alter its identity, stability, or accessibility for protein
translation, respectively. Although, bacteria do have a range of post-transcriptional
regulatory strategies (Dar and Sorek 2018).

Fig. 5.2 Coordination between host and symbiont gene expression enables host-symbiont inter-
actions. (a) Overview of endogenous general mechanisms of eukaryotic and bacterial gene expres-
sion from mRNA transcription from DNA, to protein translation from mRNA, to protein turnover
(solid lines). Methodological advancements over the past couple of decades have revealed that
eukaryotes and bacteria have more mechanisms in common (pink italicized text) than previously
estimated (Güell et al. 2011). Interestingly, bacteria can also regulate their mRNA via poly
A-tailing, however, in contrast to eukaryotes, this signals for mRNA degradation and represents a
small fraction (<<1%) of transcripts (Güell et al. 2011), which is why it is not listed above.
Additionally, it should be noted that post-transcriptional regulatory components contained within
mRNAs, such as 50-untranslated regions, influence the access of proteins and other signaling
molecules to transcript translation start sites and riboswitches, but are not explicitly listed. Recip-
rocal control over host/symbiont processes works through endogenous and mimicked mechanisms
(dashed lines). (b) An example of how host-symbiont interactions (straight white arrows) function
with endogenous mechanisms (curved white arrows) to cause phenotypic changes in cell state, such
as symbiont-induced formation of an intracellular replicative niche derived from the endoplasmic
reticulum membrane, as has been reported forWolbachia (Fattouh et al. 2019) and a variety of other
symbionts (see text)
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In addition to phylogenetic constraints, the different body plans and life histories
among hosts and symbionts also underlie their different genetic regulatory capabil-
ities. Multicellular hosts with complex tissue types and body plans require precise
mechanisms for controlling gene expression across both space and time to properly
control tissue differentiation and maintain stem cell pluripotency. Many plants and
animals epigenetically alter their DNA by packaging it into chromatin, which helps
maintain differential gene expression in different cell types over the lifespan of the
host (Meissner 2010; Li et al. 2011). Interestingly, epigenetic alterations also
underlie the transitions between parasite life stages that are evoked by different
hosts, both in multicellular (Roquis et al. 2018) and single-cellular (Duraisingh and
Horn 2016) eukaryotic parasites. By binding to the DNA promoters and regulatory
regions made accessible by epigenetic modifications, transcription factors are also
very important to cellular differentiation. This is true for both eukaryotes as well as
bacteria, which use transcription factors to differentiate into different metabolic or
motility states in response to environmental signals (Laub et al. 2007; Cole and
Young 2008; Losick and Desplan 2008; Wolański et al. 2014).

Using these similarities and differences in genetic regulation, many host-
associated bacteria have evolved ways to interact with host regulatory pathways.
The simplest model for how a bacterium evolves control over its host’s gene
expression is through the co-option of one of its own pathways. In this situation,
the majority of required machinery for the pathway would already be in place, and
only modifier components would need to be added for controlling host gene expres-
sion. In contrast, it is also possible for bacteria to evolve strategies for interfering
with eukaryotic-specific mechanisms of gene expression, such as histone modifica-
tions or splicing. In fact, this strategy appears to be quite common among pathogenic
bacteria, which can possess proteases, acetyltransferases, kinases, phosphatases,
ubiquitin ligases, and deubiquitinases for altering host gene expression (Guven-
Maiorov et al. 2017). It is unlikely that genes lacking functions specific to the
bacterial cell evolved in concert with the endogenous bacterial gene expression
regulatory networks. Thus, their presence implies either introduction via horizontal
gene transfer (e.g., Patrick and Blakely 2012) or functional convergence (e.g.,
Alvarez-Venegas 2014), often resulting in structural mimicry of the host protein
(Frank 2019).

The nature of bacterial regulation of host gene expression likely depends on the
host cell type and the desired outcome of the interaction. In terms of host cell
differentiation, bacterial influence can either cause a host cell to become less
differentiated, i.e., more stem-cell-like with pluripotent capabilities, or it can cause
a host cell to become more differentiated toward some particular fate.
Less-differentiated fates could facilitate bacterial transmission, especially if they
are proliferative because bacteria can be inherited by both daughter cells during cell
division. For example, the intracellular symbiont Wolbachia has been shown to
segregate evenly between dividing embryonic cells in Drosophila melanogaster
(Albertson et al. 2009). More differentiated fates could have a variety of impacts
depending on whether the interaction is mutualistic or pathogenic. For example, the
differentiation of host cells into bacteriocytes in mutualistic associations (see
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Fig. 5.1b) provides an environment for bacterial symbionts to live at high densities
and perform metabolic functions necessary to the host (Braendle et al. 2003; Hongo
et al. 2013; Matsuura et al. 2015). In pathogenic interactions, bacteria often induce
host cell differentiation to reach a metabolic state where more resources are provided
to the bacteria for replication, increasing bacterial virulence and infectivity (Cornejo
et al. 2017).

5.3 Making a House a Home: Bacterial Symbionts Influence
Host Cellular Differentiation During Infection
and Establishment

In the sections below, we describe examples from the literature of different ways in
which pathogenic and mutualistic symbionts have been found to control host cellular
differentiation. These examples are generally organized by their place in the molec-
ular biology hierarchy, from DNA to RNA to protein. Bacterial influence may occur
at early points in the hierarchy and have cascading effects on the subsequent stages
of gene expression, which are discussed when possible. As regulation becomes
circular at the ends of the hierarchy, e.g., post-translational modifications of histone
proteins affect DNA accessibility for transcription, this framework serves to orga-
nize the discussion.

5.3.1 Epigenetic Control of Host Gene Expression

Multicellular organisms control the differentiation of their cells and tissues through
epigenetic modifications put in place during development (Meissner 2010), and
bacterial symbionts often use this mechanism to influence host cellular differentia-
tion too (Hamon and Cossart 2008). Indeed, abundant evidence exists that a variety
of host-associated bacteria, including Legionella, Listeria, Clostridium, Streptococ-
cus, Helicobacter, and Salmonella, are able to influence host DNA methylation or
histone post-translational modifications to alter chromatin transcriptional accessibil-
ity and attenuate the immunological responses their infections solicit (Bierne et al.
2012). Immune responses include the upregulation of inflammatory cytokines,
chemokines, toll-like receptors, and antimicrobial peptides, including cationic anti-
microbial peptides (CAMPS). Bacterial symbionts can inhibit gene expression
underlying these responses by directly altering chromatin packaging with their
own enzymes (Alvarez-Venegas 2014). They can also indirectly alter the activities
of host proteins such as DNA methyltransferases (DMTs), histone acetyltransferases
(HATs), histone deacetylases (HDACs), and histone methyltransferases (HMTs)
through protein–protein inhibition or signaling, e.g., through short-chain fatty
acids (Grabiec and Potempa 2018). Depending on the molecular specificity of the
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interactions, epigenetic alterations can be highly targeted to a particular host gene or
can be global across the host genome. For example, Shigella flexneri produces and
secretes an effector protein, OspF, that ultimately prevents histone phosphorylation
and NF-B access to transcription binding sites, thus inhibiting an immune response
(Arbibe et al. 2007). Importantly, these anti-inflammatory mechanisms are also used
by commensal bacteria to a more beneficial effect because chronic inflammation is
harmful to hosts (Grabiec and Potempa 2018).

Interestingly, in some instances, pathogen control of the host immune response
can also induce developmental effects. For example, in the greater wax moth,
Galleria mellonella, infection with Listeria monocytogenes increases the expression
of both HATs and HDACs, resulting in a developmental delay that extends the time
until metamorphosis (Mukherjee et al. 2012). Developmental effects such as these
could have initially arisen as a side effect of cross-talk between epigenetic mecha-
nisms mediating development and immunity (Vilcinskas 2017) or immune activa-
tion being required for nuclear reprogramming (Lee et al. 2012), and been
maintained by the pathogen for its benefit. Developmental delays could be beneficial
for reallocating resources from the host to the pathogen (Vilcinskas 2017). Thus,
influence of host cellular differentiation can be a byproduct of the mechanisms used
for infection and virulence (Vilcinskas 2017), and might facilitate the evolution of
more intrinsic manipulations that change the identity of the host cell for symbiont
purposes.

The known cases of bacterial epigenetic reprogramming of host cellular differ-
entiation are from pathogenic bacteria, potentially due to pathway cross-talk. In an
exquisite display of cellular manipulation, the intracellular pathogen that causes
leprosy, Mycobacterium leprae, has been shown to reprogram the Schwann cells it
inhabits to reach a stem cell-like state (Fig. 5.1a). It does this via changes in
methylation patterns and gene expression profiles that turn off Schwann cell differ-
entiation genes/transcription factors and turn on developmental and embryonic
genes/transcription factors. From this reprogrammed state, these infected stem cell-
like cells can then differentiate into different tissue types and migrate from the
peripheral nervous system to the surrounding connective tissues and muscles,
helping to disseminate the bacteria throughout the host. Interestingly, they also use
this reprogrammed state to attract and infect macrophages, further spreading the
infection (Masaki et al. 2013).

A more brute-force approach to epigenetic reprogramming of host cells has been
reported for the male-killing spirochete parasite of D. melanogaster, Spiroplasma.
While epigenetic regulation via DNAmethylation does not occur inD. melanogaster
because it lacks functional DNA methyltransferase enzymes (Goll and Bestor 2005),
it does regulate its gene expression with histone acetylation. In males, acetylation is
used to double the expression of X chromosome-linked genes. Spiroplasma symbi-
onts are able to interfere with this process to induce male killing, which eliminates
these “dead-end” infections from the population so that more resources are available
for the females, through which these bacteria will be maternally transmitted (Veneti
et al. 2005). These bacteria accomplish male-killing by interfering with the male
specific lethal 2 (MSL-2) protein of the dosage compensation complex, which is
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only active in male embryos, causing it to be randomly mislocalized across the
genome. Mislocalization causes randomly elevated transcription across the genome
through elevated acetylation, resulting in male lethality (Cheng et al. 2016). Recent
work by (Harumoto and Lemaitre 2018) identified the Spiroplasma Spaid protein,
which contains ankyrin and deubiquitinase domains, as sufficient to induce male
lethality through the MSL-2 complex.

While we are still in the early days of characterizing how bacterial symbionts can
epigenetically modify host cellular differentiation through chromatin modifications,
a number of preliminary data points suggest that this will be a productive area of
research in future years. For example, host-pathogen associations have been reported
to have long-lasting or transgenerational effects, likely mediated through epigenetic
mechanisms, although they have not yet been identified (Fridmann-Sirkis et al.
2014; Mukherjee et al. 2017; Yang et al. 2018; Gegner et al. 2019). Epigenetic-
based gene regulation is also implicated in eukaryote-eukaryote mutualisms such as
coral-algal symbioses (Li et al. 2018). Furthermore, bioinformatic evidence suggests
that many host-associated bacteria contain SET-domain proteins in their genomes
(named for their discovery in Drosophila proteins Su(var)3–9, Enhancer-of-zeste
and Trithorax), which are known to encode lysine histone methyltransferases
(Alvarez-Venegas 2014). Given that bacteria do not contain histones, it is highly
likely that many of these proteins are used to alter eukaryotic cellular functions.

5.3.2 Symbiont Co-option of Host Signaling Pathways
and Transcription Machinery Mimicry

Studying the intertwined and intimate interactions between host and symbiont is
often a difficult task, however, the advent of microarrays and next generation
sequencing opened up one avenue of investigation significantly: host and symbiont
transcriptomics. While these methods enabled the high-throughput collection of
gene expression data from hosts and symbionts, challenges continue to this day
regarding the amount of mRNA that can be obtained from host-associated bacteria in
situ. One of the main issues involves the drastic differences in relative abundance of
bacterial versus eukaryotic mRNA. Furthermore, bacterial mRNA only comprises
~4% of total cellular bacterial RNA, with rRNAs and tRNAs making up the bulk of
the transcripts. In addition, the half-life of bacterial mRNAs is far shorter than that of
eukaryotic mRNAs, making it difficult to accurately capture bacterial gene expres-
sion in real-time. On top of all of this, bacteria do not A-tail their transcripts unless
they are being marked for degradation. Therefore, while eukaryotic mRNAs can be
selected for by poly-dT priming, bacterial mRNAs cannot be directly selected, and
instead must be depleted of rRNA (La et al. 2008). Nonetheless, many methodolog-
ical tricks have been developed over the years to deplete rRNAs and host transcripts
or enrich for microbial mRNAs (Güell et al. 2011), and so this is the step of gene
expression that we have the most data for presently.
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These studies have revealed a few trends in host-symbiont transcriptomics.
Importantly, it appears that some, but not all bacterial symbionts are capable of
modulating their own or their host’s transcription in response to the association.
Those that cannot typically exhibit severe degrees of genome erosion, and are
discussed later in this section. However, it is worth noting that even the symbionts
with extreme levels of genome degradation are able to induce the differentiation of
the specific host cells and/or organs they reside in, termed bacteriocytes and
bacteriomes, respectively (see Fig. 5.1b). While the mechanism(s) of induction
have not been identified, and may involve other elements of host signaling pathways
(Smith and Moran 2020), upregulation of the host homeobox transcription factor
Ultrabiothorax has been shown to be necessary for bacteriocyte differentiation in
seed bug insects (Matsuura et al. 2015) and aphids (Braendle et al. 2003). In general,
the symbionts that can influence host transcription do so by either modulating host
signaling pathways upstream of transcriptional responses (Rogan et al. 2019) or by
mimicking host transcription factors, activators, and suppressors (Saijo and Schulze-
Lefert 2008). Examples of these two strategies have been reported for diverse
symbiotic systems and are detailed below.

Interaction with host signaling pathways to induce transcriptional changes is the
most commonly reported strategy for symbiont-induced modulation of host tran-
scription. Symbionts may be predisposed to evolving this strategy because compo-
nents of the host signaling cascades that induce immune responses are also used
during development (Rogan et al. 2019). This is likely another manifestation of
pathway cross-talk discussed above. Of the known signaling pathways, pathogens
have been shown to frequently interact with the Notch, Wnt, and STAT3 pathways
(Hannemann et al. 2013; Rogan et al. 2019). Wnt signaling is especially fruitful to
exploit because its induction through canonical and noncanonical pathways can alter
gene expression to manipulate immune responses and increase cell proliferation
(Rogan et al. 2019). Additionally, the Wnt signaling-induced transcription factor
β-catenin is important for the activation of many genes including ones for adherens
junction integrity, which is essential for epithelial integrity. Given that many path-
ogens are benefited by breaking down epithelial barriers for further dissemination,
the ability to target Wnt signaling may be strongly selected for. Thus, by increasing
the translocation of transcription factors such as β-catenin to the nucleus, symbionts
can simultaneously make a more hospitable and a larger niche for themselves in
the host.

Transcription-level bacterial control of host cellular differentiation via the Wnt
pathway is also displayed by Helicobacter pylori, the leading cause for chronic
gastric inflammation and cancer worldwide. This epsilon-proteobacterium colonizes
the mammalian stomach epithelium through controlling cell differentiation, prolif-
eration, and apoptosis (see Fig. 5.1c). It accomplishes this via direct interactions with
cell adhesion and polarity factors (Amieva 2003; Bagnoli et al. 2005; Wessler and
Backert 2008) and indirect interactions with host transcription factors, including
β-catenin and (Hatakeyama 2006; Wessler and Backert 2008) and Nuclear factor of
activated T-cells (NFAT) (Yokoyama et al. 2005). H. pylori-induced transformation
of host gastric epithelial cells resembles the process of epithelial-to-mesenchymal
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cellular transition during embryogenesis, and produces an invasive migratory phe-
notype through altering the localization and expression of genes involved in con-
trolling cell shape, polarity, and division. While there are several identified
mechanisms underlying these abilities, most involve the effector protein cytotoxin-
associated gene A (CagA) (e.g., Yokoyama et al. 2005; Bagnoli et al. 2005; Suzuki
et al. 2009; Bertaux-Skeirik et al. 2015), which H. pylori injects into host epithelial
cells with its type IV secretion system. The large, 1200 amino acid CagA protein
causes a range of effects due to interactions between host factors and its N- and
C-terminal domains, which have different activities in different phosphorylation
states (Bagnoli et al. 2005; Hatakeyama 2006; Wessler and Backert 2008). Interest-
ingly, CagA exhibits structural and functional similarity to the eukaryotic Grb-2-
associated binder (Gab) adapter proteins, although it does not exhibit any sequence
similarity, and likely evolved to mimic Gab interactions with host cellular machinery
(Botham et al. 2008).

The nitrogen-fixing mutualistic rhizobia bacteria of leguminous plants (consisting
of alpha- and beta-proteobacterial lineages) co-opt host signaling cascades to alter
host root tissue differentiation in order to create the nodule structure where the
symbionts are housed (see Fig. 5.1d). This structure is essential to the bacteria, as
they need an oxygen-free environment to fix atmospheric dinitrogen into biologi-
cally available compounds such as ammonium. Nodule development is induced by
bacterial colonization from the surrounding soil, and follows an intricate signaling
cascade between rhizobia and the root (Oldroyd 2013). The interaction begins when
rhizobia encounter legume flavonoids in the soil, which induce the bacteria to
produce and secrete nodulation (nod) factors, which bind to host membrane recep-
tors, inducing oscillations in nuclear calcium concentration. The nuclear calcium
concentration-dependent transcriptional response is thought to activate the nuclear
calcium- and calmodulin-dependent kinase (CCaMK). CCaMK phosphorylates the
transcriptional activator CYCLOPS, inducing the expression of genes essential for
symbiosis establishment, including infection thread formation and mitotic
reactivation at the root cortex. Underscoring the importance of these host genes,
CCaMK or CYCLOPS activation alone, without the presence of symbionts, is
sufficient to induce nodule formation (Singh et al. 2014). Interestingly, many of
the host genes in these pathways have homologs in nonlegumes and are also
involved in mycorrhizae establishment, suggesting that they may have evolved for
that association first, and were co-opted for the later-evolving rhizobial associations
(Singh et al. 2014).

While the full details are not yet available, preliminary evidence suggests that
Vibrio fischeri-induced development of the squid light organ is also mediated
through host transcription factor signaling pathways (Peyer et al. 2017). In this
association, bioluminescent gammaproteobacterial V. fischeri are lured from the
complex community in the surrounding seawater by host production of chitin-like
compounds (Mandel et al. 2012). Upon localizing to the juvenile squid’s nascent
light organ epithelium, general microbe-associated molecular patterns, such as
peptidoglycan, induce changes in host gene expression and mucus production. The
bacteria then migrate through this mucus to colonize the light organ crypts (Kremer
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et al. 2013). This process is specific because the bacteria must endure acidic and free
radical bombardment by nitric oxide (Nyholm and McFall-Ngai 2004). Once within
the crypts, V. fischeri induce apoptosis and loss of external appendage structures (see
Fig. 5.1e) through interactions with Crumb, the protein regulator of apical-basal
polarity and adherens junctions (Peyer et al. 2017). Interestingly, V. fischeri-induced
tissue differentiation does not end there. In the adult squid, bacterial interactions with
genes involved in squid retinal regeneration mediate daily change in light organ
epithelial microvilli density (Heath-Heckman et al. 2016; Kremer et al. 2018).

A second mechanism for influencing host transcription has been reported for a
range of pathogens and operates through mimicking or influencing host transcription
factors, activators, or suppressors. For example, plant pathogenic bacteria, such as
Xanthomonas, the etiological agent of bacterial blight in rice, synthesize and secrete
transcription activator-like effector (TALE) proteins through their type III secretion
systems. These proteins cross into the host nucleus and mimic host transcription
activators. In susceptible plants, the binding of TALEs to host transcription factors
alters transcription start sites and induces the expression of host genes that increase
cell size, which facilitates dissemination of the bacteria from the intercellular spaces
(Saijo and Schulze-Lefert 2008; Yuan et al. 2016).

Epigenetic and transcriptional control of host differentiation are obviously effec-
tive strategies, however, genome erosion in host-associated bacteria has repeatedly
limited the capacity for these types of mechanisms in many taxa. Pathogens with no
or limited degrees of genome degradation are capable of modulating their gene
expression at the transcriptional level (La et al. 2008). Even obligate intracellular
pathogens with moderate levels of genome degradation such as the Chlamydiae
exhibit evidence of using transcription factors to modulate their own gene expression
(de Barsy et al. 2016). In contrast, obligate intracellular pathogens, e.g., Treponema
pallidum (La et al. 2008), and mutualists, e.g., Buchnera (Hansen and Degnan
2014), with extreme levels of genome erosion (genome sizes �1 Mb) generally
have relatively stable transcriptional states, although exceptions do exist (see the
Baumannia symbiont of the glassy winged sharpshooter (Bennett and Chong 2017)).
However, it is clear that some form of post-transcriptional or translational regulation
has replaced these mechanisms because, in many associations, differentially
expressed mRNA abundances do not correlate with translational abundances (i.e.,
proteins or “translatomes”, which are the ribosome-associated population of
mRNAs) (Traubenik et al. 2019).

The loss of reliance on transcriptional regulation for endogenous or host genetic
regulation is likely a direct consequence of genome erosion, as many of these
bacteria have lost the majority of their transcription factor genes and other genes
required for transcriptional regulation (Galán-Vásquez et al. 2016). Indeed, the
intracellular pathogen Mycoplasma pneumoniae encodes only eight predicted tran-
scription factors in its 0.82 Mb genome (Güell et al. 2009) (compared to E. coli’s
314 transcription factors (Güell et al. 2011)) and expresses an abundance of anti-
sense RNA and polycistronic operons relative to free-living bacteria (Güell et al.
2009). Interestingly, the substitution of transcriptional regulation with post-
transcriptional mechanisms has not resulted in higher transcription errors (Traverse
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and Ochman 2016). Next, we explore how these restricted regulatory capacities have
impacted symbionts’ abilities to interact with host biology.

5.3.3 The Pervasiveness of Post-transcriptional Mechanisms
for Control of Host Cell State

Control of host gene expression through small RNA (sRNA) pathways is a common
feature among symbiotic bacteria, likely because both bacteria and eukaryotes use
various types of sRNAs to regulate the turnover of their transcripts. While eukary-
otes make a diversity of specific sRNA classes, such as microRNA (miRNA), small
interfering RNA (siRNA), and piwi-interacting RNA (piRNA) (Palazzo and Lee
2015), bacteria make more general types of sRNA that are short to long (~50–1000s
nt) and highly structured (Bobrovskyy and Vanderpool 2013). Bacterial sRNAs are
either cis- or trans-acting, depending on whether they regulate the gene they were
transcribed from (in the case of antisense RNAs), or whether they regulate a gene far
away, respectively. Trans-acting sRNAs often have multiple targets, making them
akin to post-translational transcription factors (Güell et al. 2011). Although eukary-
otes and bacteria have very different endogenous mechanisms for sRNA-mediated
genetic regulation, the sRNAs themselves have enough similarities to make
cross-domain transfer and function possible (reviewed in (Simonov et al. 2016;
Zeng et al. 2019)). In some cases, host RNA-processing proteins are even involved
in converting bacterial sRNAs into miRNA molecules (Gu et al. 2017).

Bacterial symbionts with extreme levels of genome degradation appear to have
converted to an RNA-based strategy of genetic regulation, similar to mitochondrial
and plastid organelles (Cognat et al. 2017; Thairu and Hansen 2019). This is an
efficient strategy for bacteria with highly degraded or streamlined genomes for three
reasons. First, cis-encoded sRNA-based mechanisms of gene regulation are self-
contained within the genetic element, making this regulatory approach independent
of additional coding sequence, which may not be maintained during genome erosion.
As trans-acting sRNAs often require an RNA chaperone protein, e.g., Hfq, for
localization, the smallest endosymbiont genomes tend to not have these elements.
Second, hosts use sRNA-based gene regulation, making this regulatory mechanism
effective for both endogenous and host genetic regulation (Kim et al. 2016). Third,
sRNAs have been shown to be critical to bacterial metabolic regulation (Bobrovskyy
and Vanderpool 2013). As metabolic functions are often what intracellular mutual-
ists are responsible for in their associations, the retention of their primary regulatory
mechanism likely helps to maintain function in the face of coding sequence loss.
Consistent with this, the aphid symbiont Buchnera has been shown to use its sRNAs
to regulate its own arginine biosynthesis (Thairu et al. 2018). Of course, not all
expressed sRNAs may be functional, as the often AT-rich sequence content of these
genomes may produce spurious promoters (Lloréns-Rico et al. 2016). However, as
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pointed out by (Thairu and Hansen 2019), this “noise” may produce regulatory raw
material for symbionts to select upon.

Pathogens employ sRNAs to regulate their own virulence gene expression as well
as host miRNA-mediated immune responses (Sharma and Heidrich 2012; Sesto et al.
2014; Knip et al. 2014; Ortega et al. 2014; Vilcinskas 2017). Bacterial sRNA-based
influence of host gene expression is exemplified by the food-borne pathogen Sal-
monella. This intracellular bacterium uses the host Argonaute RNA processing
protein to modify double stranded bacterial noncoding RNA derived from the
5’-UTR of its ribosomal transcripts into ~22 bp miRNA, which it uses to promote
intracellular survival (Gu et al. 2017) via mechanisms such as inhibiting nitric oxide
production (Zhao et al. 2017). Despite these clear functions in host genetic regula-
tion, facultatively host-associated enteric bacteria such as Escherichia coli and
Salmonella enterica exhibit low conservation of antisense RNA expression
(Raghavan et al. 2012). Given that pathogens such as Listeria monocytogenes do
not share sRNAs with their nonpathogenic relatives, these data suggest that sRNAs
may be involved in the evolution of virulence (Sesto et al. 2014). Consistent with
this notion, similar mechanisms of controlling host gene expression have been
reported for eukaryotic pathogens (Knip et al. 2014). For example, the fungal
pathogen Botrytis secretes its own effector sRNAs into host cells that bind to host
Argonaute proteins to inhibit immune gene expression via RNA interference (RNAi)
(Weiberg et al. 2013). Bacterial pathogen-produced sRNAs may even mediate an
epigenetic memory of the infection, as Pseudomonas aeruginosa’s sRNAs have
been recently shown to induce pathogen avoidance up to four generations after
infection (Kaletsky et al. 2019).

Although the majority of reported examples of symbiont-induced host post-
transcriptional gene regulation involve modulating immunity or uncharacterized
phenotypic effects, one example does exist of a symbiont that uses sRNA to regulate
host tissue differentiation. Plant pathogenic bacteria in the genus Agrobacterium
inhabit soils and, depending on the species, cause neoplastic tumors (galls; see
Fig. 5.1f) or excess adventitious roots (hairy roots) when they infect wounded plants
(Nilsson and Olsson 1997). Within these new tissue structures, Agrobacterium
induces host cells to synthesize metabolites (termed opines) that only the bacteria
can use, effectively forming a symbiont-specific niche in the host plant (Escobar and
Dandekar 2003). All pathogenic Agrobacterium species examined to date establish
infections via transferring a plasmid-encoded section of their genome called T-DNA.
Once within the host cytoplasm, T-DNA-encoded genes are expressed by the host
because they contain the required eukaryotic regulatory elements (i.e., TATA box,
CAAT box, and polyadenylation signals) (Escobar and Dandekar 2003). Oncogenes
encoded by T-DNA are responsible for inducing changes in host cell differentiation
by synthesizing auxin and cytokinin plant hormones. Depending on the species’
T-DNA content, either undifferentiated tumors or proliferation of differentiated
tissues results from these alterations. Also encoded on T-DNA are the opine-
producing genes, which synthesize these metabolites for bacterial nutrition (Nilsson
and Olsson 1997; Escobar and Dandekar 2003). While it is clear that increased
hormone signaling induces host plant tissue differentiation, the precise mechanisms
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of tumor differentiation are still being elucidated. However, recent high throughput
sequencing has made it clear that bacterial factors interact with host RNA silencing
pathways to induce tumor formation. Specifically, tumor formation by
Agrobacterium tumefaciens requires host miRNA pathways, but is inhibited by
host siRNA pathways. Over the course of tumorigenesis, dedifferentiation induces
an anti-silencing state that inhibits siRNA-based immunity against bacterial T-DNA
(Peláez et al. 2017).

In addition to sRNA-mediated mechanisms, some pathogens also modify host
immunogenic gene expression post-transcriptionally through RNA-binding proteins
and alternate splicing (Svensson and Sharma 2016). The RNA-binding proteins
carbon storage regulator (Csr) and regulator of secondary metabolism (Rsm) are
produced by a range of pathogenic bacteria, including Yersinia pseudotuberculosis
and Legionella pneumophila, and bind to the translation initiation region of a large
diversity of mRNAs, many of which underlie host immune responses, to inhibit
their translation (Svensson and Sharma 2016; Kusmierek and Dersch 2018). As
splicing is involved in the activation of normal immune responses to infection, (e.g.,
via release of membrane-bound pre-mRNAs), pathogen-modified splicing has been
proposed to be an understudied mechanism for pathogen manipulation of host gene
regulation (Chauhan et al. 2019; Rigo et al. 2019). Indeed, coimmunoprecipitation
experiments have shown that Mycobacterium tuberculosis produces effector pro-
teins that bind to host splicing factors (Chauhan et al. 2019). In L. pneumophila
infections, the bacteria inhibit the splicing and activation of response regulator
mRNAs, which would otherwise activate the host’s immunogenic unfolded protein
response as a consequence of the bacteria’s co-option of endoplasmic reticulum
membrane (Treacy-Abarca and Mukherjee 2015). Bacterially induced alternative
host gene splicing also appears to have been co-opted by mutualistic root symbionts,
as many plant transcripts are alternatively spliced during rhizobia-induced root
nodule formation, although the responsible bacterial mechanisms have yet to be
identified (Rigo et al. 2019).

Although only a single example of symbiont-induced host cellular differentiation
via post-transcriptional gene regulation has been reported (Agrobacterium-induced
tumors), this mode of host manipulation likely occurs more frequently in nature for a
couple of reasons. First, bacterial and fungal pathogens have been shown to use their
sRNA to manipulate host RNAi-based gene silencing (Weiberg et al. 2013; Gu et al.
2017). Second, this mechanism is not unique to pathogens. Organellar sRNAs have
been found to interact with the nuclear-encoded Argonaute protein, suggesting that
bacterially derived organelles have retained the ability to regulate host gene expres-
sion through host RNA interference pathways (Cognat et al. 2017).

5.3.4 Influence of Symbionts on Host Protein Translation

Eukaryotic translation involves a complex suite of interactions with various protein
complexes to bind the 50 cap and 30 poly-A tail of mRNA molecules, initiate
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translation, and elongate the growing peptide. The timing and location of this
process influences protein localization and cellular patterning. Initiation is the rate-
limiting step of translation because it requires the recruitment of multiple initiation
factor proteins to the 50 cap, recruitment of the poly-A binding protein (PABP) to
both the 50 cap and 30 poly-A tail, followed by the assembly of elongation factor
proteins. Thus, initiation and elongation are the steps most pathogens target to inhibit
translation (Mohr and Sonenberg 2012; Jan et al. 2016). In some cases, hosts can
overcome translational blocks by overexpressing mRNAs for immune responses,
effectively overwhelming the components mediating the block, in a process termed
mRNA superinduction (Barry et al. 2017).

Viruses excel at hijacking host translation because all must commandeer it for
their own protein synthesis, and many can even induce the host machinery to
preferentially translate viral mRNAs (Toribio and Ventoso 2010; Jan et al. 2016;
Jaafar and Kieft 2019). One common mechanism for co-opting host ribosomes is
through interacting with the cap-initiation complex during translation initiation to
inhibit and/or co-opt host factors. For example, picornaviruses such as Poliovirus
produce a protease that cleaves the cap-binding domain of host initiation factor
protein eIF4G. That protein fragment then binds to viral mRNAs and enables
cap-independent translation (Schneider and Mohr 2003). Similarly, RNA viruses
like Hepatitis C are able to directly bind host ribosomes with their genome’s 5-
0-untranslated end and a subset of host initiation factor proteins (i.e., eIF3 and eIF2),
enabling translation of the full viral genome (Au and Jan 2014). DsDNA adenovi-
ruses phosphorylate host initiation factor protein eIF4E, which inhibits mRNA cap
binding and enables the virus to co-opt the translation machinery for its own
mechanism, termed ribosome shunting (Schneider and Mohr 2003). In the previous
two examples, viral protein synthesis is accomplished through rendering required
host translational components unusable. However, examples also exist in which viral
translation is accomplished while host translation is ongoing, such as the human
cytomegalovirus (HCMV). Within host cells, HCMV increases the expression of
host PABPs, which positively regulate the expression of initiation complexes,
resulting in an overall increase in the abundance of translation machinery (Au and
Jan 2014). Impressively, these strategies are often robust to host interference, as
viruses have evolved counter mechanisms that are enacted in response (Jaafar and
Kieft 2019).

A range of bacterially produced toxins and effector proteins target host translation
in order to inhibit immune responses and scavenge resources (Mohr and Sonenberg
2012). In intestinal infections, Pseudomonas aeruginosa-secreted Exotoxin A is
endocytosed by adjacent host cells where it inhibits mRNA translation by
ribosylating and inactivating host elongation factor EF2 (Dunbar et al. 2012;
McEwan et al. 2012). Interestingly, the exotoxins of Vibrio cholera and Coryne-
bacterium diphtheriae have been shown to inhibit host translation by EF2
ribosylation as well, suggesting this is a common mechanism (McEwan et al.
2012). The intracellular pathogen Legionella pneumophila blocks host translation
through modifying host translation machinery using five of its effector proteins
(Fontana et al. 2011) that act through at least two distinct mechanisms. Host
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translation elongation factor eEF1A is inhibited via glycosylation by the secreted
L. pneumophila glucosyltransferases (Lgts), Lgt1, Lgt2, and Lgt3 (Michard and
Doublet 2015). Additionally, phosphorylation of host chaperone protein Hsp70 by
the Legionella eukaryotic-like gene K4 (LegK4), an effector kinase, causes Hsp70 to
stall and further lowers the translation rate (Moss et al. 2019). These mechanisms
appear to primarily target the host immune response, but may also potentiate the cell
for metabolic rewiring (Michard and Doublet 2015). The rewiring process and
L. pneumophila’s wide diversity of post-translational mechanisms for influencing
host gene expression are discussed in the next section. Translation inhibition is
essential for the establishment of L. pneumophila long-term, as the S-phase of the
host’s cell cycle is lethal to the bacterium, and blocking translation triggers cell cycle
arrest (Sol et al. 2019). Fascinatingly, this attribute may be a side effect of
Legionella’s history of association with free-living amoebae that live in oligotrophic
bodies of water, which likely enter S-phase infrequently due to nutrient limitation
(de Jesús-Díaz et al. 2017).

From the existing literature, it appears that mutualistic bacteria are unlikely to
target host translation for two reasons: first, inhibiting translation induces strong
antimicrobial responses and second, the genomes of these bacteria likely do not
encode the necessary machinery. Given that all viruses hijack protein translation
and many pathogens secrete effector proteins to inhibit translation, hosts have
evolved signaling mechanisms to detect this perturbation and induce apoptosis
(McEwan et al. 2012; Mohr and Sonenberg 2012; Cornejo et al. 2017). Thus, it is
likely in the best interest of a symbiont whose strategy is to live in harmony with its
host to not interfere with protein translation. Sensitivity to translational inhibition
may also underlie why we were unable to find examples of translation-based
symbiont-induced host cellular differentiation. Furthermore, the limited genomic
coding capacity of these bacteria suggests that they do not encode the proteins
necessary to do so. For example, many of these bacteria have lost a subset of their
tRNA genes, and instead rely on codonwobble to pair all 61 codons. Furthermore, the
3’-CCA sequence has been lost from many of the tRNAs that remain in the genome
and must be added on post-transcriptionally (Hansen and Moran 2012). Thus, these
bacteria are ill equipped to manipulate host translation.

5.3.5 Post-translational Modification of Host Genetic
Regulatory Components

In both eukaryotes and bacteria, protein activity, stability, and physical location are
easily altered through post-translational modifications such as phosphorylation,
acetylation, methylation, and glycosylation (Macek et al. 2019). Eukaryotes have
many more modifications, some of which can be applied to bacterial proteins in host
cells, such as prenyl groups for lipidation and membrane attachment (Al-Quadan
et al. 2011). While the mechanism of protein modification is simple—a functional
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group is covalently bound to a protein—the downstream impacts of protein modi-
fications can be quite complex. For example, ubiquitination can either lead to
proteasomal protein degradation or the induction of signaling cascades, depending
on the lysine residue ubiquitinated and how many ubiquitins are added (Haglund and
Dikic 2005). Amazingly, despite their differences in endogenous post-translational
modification capacities, many bacterial symbionts have evolved their own proteins
for adding and removing eukaryotic protein modifications such as ubiquitin (Ribet
and Cossart 2010; Rolando and Buchrieser 2014; Zhou and Zhu 2015).

One of the most common reasons for symbionts to manipulate host protein
modifications is to alter the metabolic balance of the cell to create a nutritive
niche. A straight-forward strategy to accomplish this is to increase protein proteol-
ysis via the host’s ubiquitination pathway. Short peptides and amino acids alone can
go a long way toward meeting a symbiont’s complete nutritional needs because
many bacteria can use amino acids as both nitrogen and carbon sources (Zhang and
Rubin 2013). Using eukaryotic cellular machinery, three enzymes are needed to
ubiquitinate a protein, targeting it for degradation by the proteasome: a ubiquitin-
activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-
ligating enzyme (E3). These three protein functional classes are not equally
represented in eukaryotic genomes, with there being only a few E1 enzymes, several
dozen E2 enzymes, and hundreds of E3 enzymes (Zhou and Zhu 2015). Mechanisms
of bacterial interference in host ubiquitination have evolved to mirror the host’s
pattern of protein diversity: the vast majority of mechanisms involve bacterial
protein mimics or new versions of E3 enzymes, whereas E1 and E2 inhibitory
mechanisms are less common (reviewed in (Zhou and Zhu 2015)). Some pathogens,
such as Legionella, have even evolved novel mechanisms of ubiquitination that do
not involve the E1 or E2 enzymes or ATP (Qiu et al. 2016).

As with many pathways, the ubiquitination pathway overlaps with immune and
general signal transduction, making it a large target for bacterial interference. During
the infection process, intracellular bacteria first have to deal with host ubiquitination
to evade the innate immune system. Direct ubiquitination of intracellular pathogen
membranes with host Parkin E3 ligase marks them for xenophagy (Manzanillo et al.
2013). In the event that this mechanism is insufficient, the host perceives symbiont-
induced manipulations that interrupt protein synthesis or increase proteolysis,
resulting in an excess of ubiquitinated proteins and amino acids in the cytoplasm.
General autophagy is induced in this event, if the bacteria do not interrupt the process
by reducing the number of ubiquitinated proteins with bacterially encoded
deubiquitinating enzymes (Zhou and Zhu 2015). Once the threat of ubiquitin-
mediated xenophagy has been ameliorated, symbionts can alter patterns of
ubiquitination to trigger changes in host gene expression, which further alter
immune responses and shape the cellular niche. This process is illustrated by the
obligate intracellular pathogen Chlamydia. This bacterium uses its ChlaDub1 effec-
tor protein to deubiquitinate β-catenin, preventing its degradation and enabling its
transport to the nucleus where it serves as a transcription factor to activate genes
invoking cell proliferation, nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) signaling, and apoptosis inhibition (Rogan et al. 2019). Given the
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importance of ubiquitination in normal host biology, it is not surprising that intra-
cellular bacteria have evolved to interact with ubiquitin and its mechanisms for
addition and removal.

In addition to ubiquitination, other post-translational modifications are often used
by bacterial symbionts to control host gene expression and cellular differentiation
(in this case, to create a nutritive niche). The pathogen of amoebas, lung macro-
phages, and neutrophils, Legionella pneumophila, is an excellent example of a
bacterium that has become proficient at altering host post-translational protein
modifications to metabolically rewire the host cell (see Fig. 5.1g). Within hours of
entering a new host cell, L. pneumophila induces changes in the cell that cause the
Legionella-containing vacuole (LCV) to become coated in smooth membrane
derived from the endoplasmic reticulum that is lined with mitochondria and ribo-
somes. It accomplishes these tasks through a diverse array of nearly 300 effector
proteins that are able to phosphorylate, alkylate, ubiquitinate, glycosylate,
AMPylate, and phosphocholinate host proteins (Michard and Doublet 2015). Fur-
thermore, it is able to co-opt host proteins to perform additional modifications on its
own proteins, such as prenylation (e.g., farnesylation) (Al-Quadan et al. 2011).
Interestingly, interaction with the endoplasmic reticulum to form a replicative
niche is common among pathogens, such as the alphaproteobacterium Brucella
abortus and the Chlamydiales bacterium Simkania negevensis (Cornejo et al.
2017) and is also altered in host-derived bacteriocytes that house mutualistic bacteria
(Simonet et al. 2018).

To induce the formation of the LCV, L. pneumophila secretes a range of effector
proteins into the host cytoplasm to either post-translationally modify host proteins or
be post-translationally modified by them. The host-derived membrane surrounding
L. pneumophila is first altered by the addition of endoplasmic reticulum-derived
smooth vesicles, which are directed toward the forming LCV by inactivation of host
GTPase Rab1 via adenylation by the effector SidM. Interestingly, L. pneumophila
secretes two other effectors, SidB and LepD, that antagonize SidM adenylation, as
well as one effector, AnkX, that can independently maintain Rab1 in the active state
(Michard and Doublet 2015). This genetic redundancy suggests that this step is
essential to LCV formation. As this is occurring, the AnkB effector co-opts host
machinery to farsynlate AnkB, enabling it to attach to the LCV membrane. Once
attached, the F-box E3-ligase interacting domain of AnkB recruits host ubiquitin
ligase complexes to the membrane where together they attach ubiquitins to the
membrane underlying the bacteria. The dense polyubiquitinated clusters attract the
host proteasome, which proceeds to degrade ubiquitinated proteins and provide
amino acids for bacterial nutrition (Bruckert et al. 2014). Simultaneously, epigenetic
changes are also induced to increase the availability of ribosomes to embed in the
LCV membrane. The LegAS4 effector confers increased transcription of host rDNA
via functioning as a lysine histone methyltransferase through its SET domain
(Rolando et al. 2013). Thus, with L. pneumophila, we come full circle in our
classification of symbiont-induced host differentiation because through post-
translational modification of host histones, these bacteria are able to influence host
gene expression at the epigenetic DNA level.
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While obligately intracellular mutualists have not yet been reported to influence
host post-translational protein modifications, data from symbiotically derived organ-
elles suggest some will have this capability, but may have different functions for it
within host cells relative to pathogens. Two pieces of evidence support the idea that
obligate mutualists may be able to post-translationally modify host proteins. First,
the mitochondrial genome has retained genes capable of making post-translational
modifications (Gabaldón and Huynen 2007). Second, both mitochondrial proteins
encoded by the mitochondrial genome as well as those transferred to the nuclear
genome have been shown to be post-translationally modified via phosphorylation,
acetylation, and succinylation, indicating that these processes can occur within and
by the organellar genome (Hofer and Wenz 2014). However, there may be striking
differences between patterns of symbiont-induced host post-transcriptional modifi-
cations between mutualists and pathogens. For example, with regard to
ubiquitination, amino acid economies are vastly different between pathogenic infec-
tions that usurp them from the host (Zhang and Rubin 2013) and mutualistic
infections that synthesize them for the host (Feng et al. 2019). Thus, if mutualists
are capable of altering host ubiquitination, they may be more likely to use it to
control host signaling cascades than to obtain amino acids.

5.3.6 Trends in Symbiont-Mediated Host Cellular
Differentiation Mechanisms

From the examples of symbiont-mediated host cellular differentiation described
above, it is clear that bacteria are capable of manipulating host gene expression at
every step in the process. Some symbionts can induce host epigenetic alterations that
impact the access of transcriptional machinery to chromatin. Many taxa can interfere
in transcriptional signaling cascades or transcription factor binding. An abundance
of symbionts, including obligate intracellular mutualists, can modify mRNA reten-
tion by utilizing the similarities between bacterial sRNA and eukaryotic miRNA
pathways. A limited range of pathogens can inhibit translation through the use of
toxins and effector proteins. And, lastly, a number of pathogens use effector
molecules to post-translationally modify host proteins. Impressively, these
host-associated bacteria as a whole are not only able to use their own endogenous
regulatory elements to control host gene expression, but they have also repeatedly
evolved mechanisms for interacting with elements they do not have in their own
genomes, such as histones and ubiquitination machinery.

Looking across this wide diversity of associations, both functionally and taxo-
nomically, a few trends stand out that may reflect shared evolutionary constraints
and pressures. First, bacterial symbionts tend to interact with differentiation proteins
and pathways that are also involved in innate immune signaling. This may reflect the
history of their interactions with their hosts. Symbionts must first evolve strategies to
work with the host immune system before they evolve more complex phenotypes.
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Given that there is a high degree of overlap between immunological pathways and
developmental pathways (Cheng et al. 2010), evasion of the immune system may
have exapted, or prepared, symbionts to interact with host cellular differentiation
pathways. Thus, symbionts have likely evolved the ability to manipulate new host
gene regulatory pathways through cross-talk between pathways (Fig. 5.3a).

The second trend that stands out in these examples is that symbiont genome
evolution heavily influences the mechanisms available to the symbiont to control
host gene expression (Fig. 5.3b). Some symbionts have evolved mechanisms to
interfere with host gene expression at every step, from DNA to mRNA to protein
(e.g., Listeria (Sesto et al. 2014)). Whereas, other symbionts, especially those with
degraded genomes, use only one or a few mechanisms. Genome degradation has
proceeded far enough in some bacteria, such as the Nasuia and Sulcia symbionts of
leafhoppers with 0.11 and 0.19 Mb genomes, respectively, that control of essential
symbiont cellular processes has been ceded to the host (Mao et al. 2018). In these
instances, it seems unlikely that the symbionts retain much capacity to manipulate
their hosts. However, as many of the host nuclear genes used to maintain symbiont
cellular functions were acquired through ancient horizontal gene transfer events
from other bacteria (Husnik et al. 2013; Husnik and McCutcheon 2017), it is clearly
not straightforward to say who is in control of who in some of these associations.

The temporal and spatial extent of genetic influence may be a factor in
constraining what symbiont-mediated host regulatory mechanisms can evolve -
mutualists need to live in their organs/tissues/cells for a long time and form large
population sizes (discussed in (Russell and Cavanaugh 2017)), whereas pathogens
only need to be there to replicate. Due to the intervening steps, the time to reach a
protein-coding effect is much longer for an epigenetic alteration than it is for a post-
translational modification, which is nearly instant (Hausser et al. 2013; Sasai et al.
2013; Shamir et al. 2016). Thus, the third trend from the data is that symbiont
mechanisms for controlling host gene expression correspond to the organismal scale
they are trying to influence (cells, tissues, or organs) and the expected duration of the
association (days, weeks, years, or lifetimes) (Fig. 5.3c). Pathogens with highly
virulent and acute infection profiles (e.g., Legionella, Salmonella, Vibrio, and
Chlamydia) implement a diversity of strategies, and are far more dependent on
fast-acting, targeted mechanisms such as blocking protein translation or altering
post-translational protein modifications within each infected cell. Whereas more
chronic types of infection (e.g., Mycobacterium leprae and Helicobacter pylori)
use mechanisms higher up in the gene expression hierarchy, evoking epigenetic and
transcriptional control of host gene expression to permanently alter cell fate across
tissues. These mechanisms also enable many mutualistic associations (e.g., aphids
with Buchnera), and the occasional pathogenic association (e.g., Agrobacterium) to
develop novel symbiont-housing cells, tissues, and organs.

The fourth and final trend from these data is that selection to control host cellular
differentiation has driven the evolution of entirely novel proteins and molecular
mechanisms. These novel elements conceptually fall in four categories depending on
whether bacteria are mimicking host proteins and/or mechanisms to manipulate host
gene expression: (1) both host proteins and mechanisms are mimicked, (2) host
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Fig. 5.3 Trends in the distribution of mechanisms for symbiont manipulation of host cellular
differentiation. (a) Cross-talk between immunological and developmental pathways due to shared
components (Cheng et al. 2010) may enable bacterial symbionts (blue star) to develop novel
mechanisms of host regulation, such as symbiont-induced cellular differentiation. (b) Genetic
regulatory capabilities are related to the state of genome erosion in bacterial symbionts. The theory
of bacterial endosymbiont genome evolution posits that upon host restriction, bacterial chromo-
somes begin degrading due to the accumulation of deleterious mutations and the subsequent
deletion of pseudogenized regions. This occurs because selection is ineffective in small, host-
associated populations. The transmission bottleneck that occurs when a subset of symbionts are
transmitted to offspring in vertically transmitted associations further contributes to genetic drift
driving the evolution of these genomes (Toft and Andersson 2010). Based upon the reported coding
capacities and mechanisms discussed here, we propose this approximate model for the retention/
loss of regulatory capacity at each regulatory level during genome erosion. (c) Mechanisms of
symbiont-induced host differentiation correlate with the cost/benefit trade-off of the association
(depicted in red/green above, respectively) potentially due to temporal constraints. For example,
virulent pathogens require fast acting mechanisms to circumvent clearance by the host immune
system. Protein regulation generates a quicker response than altering host epigenetics or transcrip-
tion does (Hausser et al. 2013; Sasai et al. 2013; Shamir et al. 2016). Thus, many pathogens likely
first evolved to work with these mechanisms. Although, many have subsequently picked up
additional mechanisms
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mechanisms are mimicked using unique proteins, (3) host protein mimics are used in
unique mechanisms, or (4) both the protein and mechanism are novel (Zhou and Zhu
2015). For example, SET domains fall in the first category, as these mimic eukary-
otic lysine histone methyltransferase in form and function, but evolved in bacteria
(Alvarez-Venegas 2014). The AnkX effector of Legionella is an excellent example
of the second category, as it contains a conserved FIC protein domain that enacts a
novel post-translational modification, phosphocholination, to modulate host Rab
protein activity (Mukherjee et al. 2011). The OspF protein, produced and secreted
by Shigella flexneri, exemplifies the fourth category, as it is a novel protein that
irreversibly dephosphorylates mitogen-activated protein kinase (MAPK) via a
unique mechanism, which permanently prevents MAPK from phosphorylating
histones for immune gene activation (Cornejo et al. 2017).

Interestingly, some hosts are able to induce some symbiotic bacteria to undergo a
differentiation-like process that changes their gene expression globally and often
permanently. Examples exist from both mutualists and pathogens. In mutualistic
rhizobia root infections, some plants induce their symbionts to terminally differen-
tiate, turning them into highly polyploid, often branching cells that cannot divide
again. Host plants appear to accomplish this by delivering a diversity of nodule-
specific symbiotic peptides, which are similar to antimicrobial peptides, to intracel-
lular rhizobia (Maróti and Kondorosi 2014). In pathogenic Chlamydia infections,
host cells starve the intracellular bacteria of amino acids while the bacteria replicate
in their active form, termed reticulate bodies. Once amino acids become unavailable,
reticulate bodies convert into aberrant bodies with low metabolic rates, which cannot
always be reactivated (Zhang and Rubin 2013). These two examples suggest that
symbiont metabolic activities and cell division rates can be manipulated by host
actions. As more data are collected for symbiotic associations, especially from single
cell transcriptomes and proteomes, it will be interesting to see if other symbionts
enter these or additional types of differentiated states.

5.4 A Natural Aptitude for Host Manipulation: The
Intracellular Symbiont Wolbachia

The obligately intracellular alphaproteobacterium Wolbachia is a ubiquitous infec-
tion among arthropod and filarial nematode species. Interest in this group has
increased in the past couple of decades due to discoveries that have made it suitable
as a biological control agent for mosquito populations (Zheng et al. 2019) and their
transmissible viruses (Hedges et al. 2008). This maternally inherited bacterium has
achieved high frequencies within and among species through a combination of
reproductive manipulation (Werren et al. 2008) and/or mutualism (Gill et al. 2014;
Newton and Rice 2019). Wolbachia’s reproductive phenotypes include feminiza-
tion, male-killing, cytoplasmic incompatibility, and parthenogenesis, all which
manipulate embryogenesis to increase the frequency of infected females in the
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population (Werren et al. 2008). However, Wolbachia’s capacity for host manipu-
lation does not end there. Even the cases of apparent “mutualism” inWolbachiamay
have evolved through the manipulative complementation of host cellular and molec-
ular pathways. In contrast to many mutualistic symbionts that imparted novel
functions to the host upon their association, many of Wolbachia’s mutualistic
functions, from apoptosis inhibition (Pannebakker et al. 2007) to oogenesis (Dedeine
et al. 2005), involve processes native to the host cell, which the host’s ancestors were
capable of accomplishing. Thus, Wolbachia mutualisms may be more accurately
described as “addictive mutualisms” (Sullivan 2017). Clearly, Wolbachia is capable
of a broad spectrum of host manipulations, which suggests that it encodes a rich
diversity of genes and pathways to interact with host gene expression.

5.4.1 Known Wolbachia-Induced Host Reproductive
Phenotypes and Mechanisms

ManyWolbachia-induced phenotypes occur during host development, and often take
place in the germline stem cell, suggesting that this bacterium is able to influence host
cellular differentiation. Animal development consists of a series of programmed cell
division, migration, and differentiation cascades that create and pattern the adult
organism (De Smet and Beeckman 2011). The ability to interact with these processes
early-on obviates the need to first dedifferentiate adult host cells, as has been more
frequently reported for bacterial pathogens and mutualists acquired from the envi-
ronment (Wessler and Backert 2008;Masaki et al. 2013; Oldroyd 2013). This is likely
due to the differences in transmission mode between these taxa, with vertically
inheritedWolbachia being present throughout development, opposed to horizontally
transmitted pathogens that get taken up by a fully differentiated adult host. Being
present in the zygote (Callaini et al. 1994; Albertson et al. 2009; Fast et al. 2011),
Wolbachia only needs to maintain stem cell status or guide the differentiation process
to produce the intended cell type or molecular outcome. This is a skillWolbachia has
become adept at, as the following examples illustrate.

Often present in host germline stem cells (Russell et al. 2019), Wolbachia has
been shown to be capable of rescuing or maintaining this cell lineage in different
host taxa. In D. melanogaster, the wMel strain ofWolbachia can rescue mutations in
the germline stem cell maintenance genes sex lethal (sxl) (Starr and Cline 2002; Sun
and Cline 2009) and bag of marbles (bam) (Flores et al. 2015). In uninfected flies,
both of these genes cause sterility in homozygous females due to the loss of germline
stem cell maintenance, resulting in tumorous, over-proliferated ovaries. Infection
with wMel restores the normal ovary phenotype. While it has not yet been shown
whether the rescue of these genes involves one or two bacterially encoded processes,
one wMel protein, toxic manipulator of oogenesis (TomO), has been identified that
is capable of rescuing part of the phenotype resulting from the loss of sxl. TomO is
able to maintain host germ cells, preventing their differentiation and loss, by
increasing the expression of the germ cell maintenance protein Nanos via binding
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to nanos mRNAs localized within host ribonucleoprotein (RNP) complexes (Ote
et al. 2016). Consistent with this mechanism, Wolbachia has been reported to
interact with other components of host RNPs, such as the protein Gurken (Serbus
et al. 2011).

While these germline stem cell maintenance genes are functional in wild-type
flies, a scenario could exist in which aWolbachia-infected population goes through a
bottleneck and fixes a loss of function allele in the population, convertingWolbachia
into an “obligate” infection. Wasp species in the genus Asobara are potentially an
example of this situation. Asobara tabida hosts an obligateWolbachia infection that
is required for oogenesis, as wasps are unable to reproduce when treated with
antibiotics against Wolbachia. This appears to have been a very recent occurrence,
as all the closely related hymenopteran species do not require Wolbachia for
reproduction (Dedeine et al. 2005). A similar situation has also been reported for
the date stone beetle, Coccotrypes dactyliperda (Zchori-Fein et al. 2006). Over time,
if a Wolbachia-dependent host diversifies and speciates, this process will produce a
taxon entirely dependent on these seemingly mutualistic bacteria. This may be what
occurred in the filarial nematode lineage. Nearly all of these parasitic worms harbor
Wolbachia infections that are required for reproduction, development, and survival
(Landmann et al. 2011). The requirement for reproduction appears to stem from
Wolbachia’s ability to maintain quiescence in the female germline stem cell,
preventing the expression of differentiation-inducing genes, and preserving its
totipotency (Foray et al. 2018).

ManyWolbachia strains, especially those found in lepidopterans and isopods, are
adept at manipulating the sex-determination systems of their hosts, turning genetic
males into females (Werren et al. 2008). The induction of sex-specific gene expres-
sion across animal cells during development requires two versions of each differen-
tiation pathway that lead to cell types with male or female-specific characteristics.
Animals use cell autonomous and hormonal, nonautonomous, mechanisms to con-
trol the sex-specific gene expression profiles of their cells. Thus, both mechanisms
are targets for Wolbachia-control of host sex-specific gene expression (Negri and
Pellecchi 2012). GivenWolbachia’s ability to influence host hormone signaling and
the overlap between hormone and epigenetic pathways, it has been suggested that
Wolbachia may have epigenetic mechanisms for controlling host gene expression
(discussed in (Negri 2012)). Consistent with this, Wolbachia inhibits the expression
of the masculinizing gene masc in the adzuki bean borer moth Ostrinia scapulalis.
As Masc controls both male-specific splicing and activation of dosage compensation
in males, inhibition of this gene results in both female features and mortality,
respectively (Sugimoto et al. 2010; Fukui et al. 2015). Similarly, in the leafhopper
Zyginidia pullula, feminized males exhibit female DNA methylation patterns,
whereas males with low Wolbachia titer exhibit incomplete feminization and male
methylation patterns (Negri et al. 2009). While the full mechanisms underlying these
phenotypes are not known, it is interesting to note that the Wolbachia genome
contains a DNA adenine methyltransferase encoded on a prophage (Saridaki et al.
2011). Furthermore, a bacterially induced epigenetic mechanism is reasonable given
that many sex-specific differentiation pathways are epigenetically controlled, regard-
less of the sex-determining mechanism (Piferrer 2013).
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In an alternative strategy to feminization, some Wolbachia strains kill host males
during embryogenesis to alter host sex ratios to favor females. Recent work by
(Perlmutter et al. 2019) suggests that in Drosophila, the Wolbachia infections that
cause male-killing may do so via Wolbachia’s WO phage-encoded WO-mediated
killing (wmk) gene. This DNA-binding gene causes overexpression of the host
dosage compensation system at male X chromosomes, resulting in hyperacetylation
at histone H4 lysine 16, DNA damage, defects in chromatin remodeling, and altered
spindle organization (Riparbelli et al. 2012; Harumoto et al. 2018; Perlmutter et al.
2019). This result is similar yet distinct from the mechanism employed by
Spiroplasma in D. melanogaster (Harumoto and Lemaitre 2018), as Wolbachia
does not induce alterations the dosage compensation system’s localization among
chromosomes (Perlmutter et al. 2019). Male-killing exhibits variable penetrance in
different hosts, bacterial genomic backgrounds, and environmental contexts. For
example, wmk does not induce male-killing in natural wMel infections in
D. melanogaster, despite it causing the phenotype when expressed heterologously
in uninfected D. melanogaster. Furthermore, the wMel wmk sequence is nearly
identical to the ortholog from the wRec strain, which causes male-killing when
wRec infects the sister species (Drosophila subquinaria) of its native host (Dro-
sophila recens; (Jaenike 2007)). Regarding environmental variability, the wBif
strain that infects Drosophila bifasciata exhibits high rates of male-killing at low
temperatures and low rates at high temperatures (Hurst and Johnson 2000). Given
how costly male-killing is to host fitness (eliminates half of all progeny), the
variability in male-killing penetrance described above and the similarity of its
mechanism to that of feminization (via the dosage compensation system) suggests
that male-killing could be a polygenic phenotype that results when a more fitness-
conserving mode of manipulation (e.g., feminization) goes wrong.

The reproductive manipulation termed cytoplasmic incompatibility (CI) involves
bacterial modifications of host gamete chromatin packaging, suggesting that this is
another example of Wolbachia using an epigenetic-like mechanism to control the
outcome of host reproduction. CI is a bacterially induced mating incompatibility
between infected males and uninfected females, or females with an incompatible
strain of Wolbachia. Reproduction between these hosts fails during embryogenesis
because modifications made to the sperm byWolbachia fail to be compensated for in
the eggs. It has been known for some time that the modifications made byWolbachia
result in the male pronucleus exhibiting delayed protamine removal and histone
deposition in the zygote, which results in mortality at the first mitosis (Landmann
et al. 2009). Recent work has revealed the bacterially encoded genes underlying
these chromatin modifications. In infected males, Wolbachia uses the prophage-
encoded deubiquitinase CI-factor (Cif) B and its binding partner CifA (also termed
CidA/B) (Beckmann et al. 2017; LePage et al. 2017) to alter sperm chromatin. CifB
appears to confer these effects through binding to host nuclear import factor
karyopherin-a and P32 protamine-histone exchange factor, which may either prevent
histone assembly components from reaching the paternal chromosomes or reduce
the efficacy of histone assembly (Beckmann et al. 2019). Expression of CifA in the
female germline is necessary and sufficient to compensate for the CifA–CifB
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induced chromatin alterations made to the male sperm by Wolbachia (Shropshire
et al. 2018). Thus, CI induction and rescue functions like a toxin-antidote system.

5.4.2 Other Known Strategies of Wolbachia-Mediated
Control of Host Gene Expression

In addition to these bacterial mechanisms of controlling host gene expression that are
tied to reproductive manipulations in the host, other mechanisms have been
proposed for Wolbachia’s more general processes of survival and persistence.
Compared to the above examples that were primarily focused on epigenetic or
post-translational mechanisms of host genetic regulation, the following examples
highlight a wider diversity of mechanisms.

To date, two studies suggest that Wolbachia can interfere with host translation
through using its own as well as the host’s transcription factors. The strain of
Wolbachia found in Culex molestusmosquitoes encodes the transcriptional regulator
gene wtrM that appears to act as a host transcription factor, upregulating the meiotic
gene grauzone. While grauzone expression correlates with CI strength in the
Wolbachia variants tested, it is not clear how increased grauzone expression impacts
this phenotype or others (Pinto et al. 2013). In Aedes aegyptimosquitoes,Wolbachia
induces expression of the host transcription factor GATA4, which suppresses
expression of the host ovary-specific genes blastoderm-specific protein 25D
(bsg25D) and imaginal disc growth factor (disc) (Osei-Amo et al. 2018). Given
Wolbachia’s propensity to associate with the germline (Fast et al. 2011), high rates
of vertical transmission through oocytes (Narita et al. 2007), and various rescue
capabilities in germ stem cells (discussed above), the annotations of these genes
suggest that they may be involved in creating or maintaining Wolbachia’s niche in
the female germline.

Abundant evidence exists that Wolbachia is able to interact with host post-
transcriptional regulation through the host miRNA pathway. In Aedes aegypti,
Wolbachia expresses its own sRNAs that are exported into the host cell and regulate
host mRNAs. For example, Wolbachia’s WsnRNA-46 sRNA has been shown to
increase the expression of the host motor protein dynein (Mayoral et al. 2014).
Additionally, Wolbachia has been shown to alter host miRNA expression in Aedes
aegypti, which impacts the expression of host protein-coding genes. For example,
Wolbachia increases the expression of host miRNA aae-miR-2940, causing the
upregulation of a host metalloprotease needed for normal infection (Hussain et al.
2011). This miRNA also downregulates host DNA cytosine methyltransferase,
AaDnmt2, causing methylation to be reduced genome-wide. Interestingly, while
inhibition of this miRNA is necessary for Wolbachia infection, its inhibition also
confers inhibition of Flavivirus replication within infected cells (Zhang et al. 2013).
In contrast, and potentially suggesting different mechanisms in different hosts or
with different viruses, Wolbachia-induced upregulation of D. melanogaster
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DNA/RNA methyltransferase was shown to inhibit replication and infectivity of the
alphavirus, Sindbis virus (Bhattacharya et al. 2017).Wolbachia has also been shown
to upregulate aae-miR-981, which downregulates the expression of importin β-4,
prohibiting AGO1 from entering the nucleus to regulate transcription (Hussain et al.
2013).

To obtain a reliable source of host amino acids, Wolbachia appears to have
evolved mechanisms to interfere with their sink and their source, i.e., translation
and proteolysis, similar to the pathogens discussed above. A recent cell-based
genome-wide RNAi screen in D. melanogaster cells infected with the wMel strain
of Wolbachia found that bacterial density, or titer, increases when host ribosomal
and translation initiation proteins are knocked down. This suggests that Wolbachia
interacts with some of these factors in wild-type cells to alter host translation
(Grobler et al. 2018). This is fascinating given the trends we reported in the previous
section, which found that generally only highly virulent pathogens interfere with
host translation. Supporting a role for translation interference inWolbachia nutrition,
this (Grobler et al. 2018) and another cell screen (White et al. 2017), found that
Wolbachia titer decreased when host ubiquitination was inhibited. Furthermore,
White et al. (2017) found that Wolbachia infection significantly increases
ubiquitination levels in the host cell. Thus, Wolbachia may alter host protein
synthesis as well as ubiquitination-mediated proteolysis to obtain amino acids as
their primary source of nutrition. Consistent with using host protein synthesis and
degradation pathways for its own nutrition,Wolbachia induces the reorganization of
host cell endoplasmic reticulum (ER) and surrounds itself with ER-derived mem-
brane (Fattouh et al. 2019), creating a niche near translation and proteolysis machin-
ery. Given that ubiquitination and protein turnover is involved in host cellular
differentiation (Kimata 2019), Wolbachia may have co-opted its nutrition-
provisioning genes for host manipulation. To take the idea of molecular cross-talk
in Wolbachia associations a step further, it is possible that Wolbachia’s ability to
modify host protein ubiquitination was first co-opted from strategies originally
evolved for evading xenophagy (e.g., Manzanillo et al. 2013; Zhou and Zhu 2015).

5.4.3 Exploring Overlooked Mechanisms: Future Prospects
in Wolbachia Research

We surveyed the literature for studies that assayed the impact of infection on gene
expression in Wolbachia and/or its host and found 71 papers published between
2000 and 2019 (Table 10.S1 and Fig. 5.4). These studies characterized gene expres-
sion at all stages, from DNA to protein, and suggest thatWolbachia has mechanisms
to interfere with host gene expression at many points in the process. Transcription-
based studies were over-represented relative to the other gene expression stages,
which is likely due to how easy generating transcriptomic data has become since the
advent of microarrays and RNAseq. Future work should focus on identifying other
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Wolbachia-mediated post-translational modifications, as these have been studied the
least. Furthermore, given the numerous examples of Wolbachia-induced miRNA
regulation in mosquitoes discussed above, evidence for similar mechanisms should
be investigated in other Wolbachia infections.

Although theWolbachia field is still in its early days, with complete mechanisms
underlying host-symbiont interactions just now being elucidated, the abundance of
eukaryotic-like elements in the various Wolbachia strain genomes suggest a diver-
sity of mechanisms are waiting to be discovered. These elements include
deubiquitinating enzymes (Beckmann et al. 2017), ankyrin repeat proteins (Siozios
et al. 2013), and proteins with dynamin domains (Rice et al. 2017). Given
Wolbachia’s known interactions with the host cytoskeleton, including
microtubule-dependent motor proteins (Ferree et al. 2005; Serbus and Sullivan
2007; Russell et al. 2018), some of these proteins could mediate these interactions.

Fig. 5.4 Distribution of existing literature addressing gene expression in Wolbachia and/or its
hosts. See Table 10.S1 for the full list of papers included here. The excess of papers studying
transcription relative to the other stages of regulation reflects the ease with which transcriptomic
data can be acquired since the advent of microarrays and Illumina sequencing. Effect¼ study found
Wolbachia infection to have an effect on host gene expression; no effect ¼ study found no effect of
Wolbachia infection on host gene expression; more data needed ¼ results were ambiguous
regarding Wolbachia’s influence on host gene expression; and not assessed ¼ Wolbachia’s impact
on host gene expression was not assessed by the paper (indicated by “NA” in Table 10.S1)
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Indeed, a Wolbachia protein containing a synuclein domain that may mediate
interactions with host actin has been characterized (Sheehan et al. 2016).

Wolbachia belongs to the Rickettsiales, a taxon with a long history of host-
association, suggesting that it possesses ancient mechanisms for host manipulation.
Indeed, the ancestor of the mitochondrion was likely a member of this taxon
(Andersson et al. 2003) and today, Rickettsiales contains a wide diversity of
pathogens, including species in Rickettsia, Orientia, Anaplasma, and Ehrlichia.
These pathogens have been shown to be capable of modulating host immune
responses via epigenetic (Garcia-Garcia et al. 2009) and post-translational (Sahni
et al. 2018) modifications, and they themselves encode a diverse set of active sRNAs
(Narra et al. 2016). Thus, future investigations ofWolbachia associations will likely
reveal a wealth of information about the cellular and molecular mechanisms bacterial
symbionts use to control host cellular differentiation, as well as how these mecha-
nisms are maintained over evolutionary time.
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